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ABSTRACT

This study introduces procedures for constructing a proficiency scale
for a large-scale test by applying Tatsuoka’'s Rule Space Model. The SAT
Mathematics (SAT M), Section 2, is used for illustrating the process and the
results. A task analysis is summarized in a mapping sentence, and then 14
processes and content attributes are identified for explaining the underlying
cognitive aspects of the examineecs’ performance on the SAT M. Analysis results
show that almost 98% of 2334 examinees are successfully classified into one of
468 cognitive states. The cognitive states are characterized by mastery or
non-mastery of the 14 attributes. Attribute Characteristic Curves, which are
conditional probability functions defined on the SAT Scale, are introduced and
used for interpreting an examinees’ proficiency. Prototypes of a student'’s

performance report and a group performance report are given as examples of

possible ways for summarizing the analysis results.




INTRODUCTION

Recent developments in cognitive theories have shown that learning is
the reorganization and integration of complex tasks. However, learning models
considered by educational measurement are primarily linear, and hence
measurement models that have been developed support the unidimensionality view
of ability levels. The purpose and goal of these models are focused on making
inferences about amount of ability or amount of knowledge that an individual
possesses, which can be located on the continuum.

A new view of achievement that emerges from cognitive and domain studies
emphasizes the importance of how knowledge is organized, what processes are
used to solve problems, the degree to which certain procedures and processes
are automated, and the ability to represent knowledge in a variety of ways.
New measurement models should be able to measure such abilities, as well as
traditional ability levels. The movement for searching for an instructionally
useful way of assessing students’'s performance has indicated the need for new
measurement theories and models. The movement for enhancing the
interpretability of test scores also urges one to develop a new methodology by
which test users with different interests in using performance results would
be satisfied.

Beaton (1988) introduced a method, called empirical anchoring and applied
it to the NAEP tests. Rock & Johnson (1989) applied this method to the SAT.
The method starts out by empirically selecting items that discriminate between
various levels on the total score distribution. These items are called
"anchoring"” items. Then experts review the anchor items that describe the

skills necessary to achieve that particular score level. The method provides




empirical probabilities of success on each of the items for students whose
scores were near the anchoring points of the scale. Although this method has
attracted a substantial amount of attention from educators, it also has
invite riticism from researchers in educational measurement and
psychometrics (Forsyth, 1991).

Marco, Crone, Braswell, Curley and Wright (1990) investigated the
relationship between SAT content variables and their predictive validity and
found that some cognitive tasks are important for predicting students’ success
in their future performance.

However, test item development has been atheoretical in terms of
cognitive theory (Gitomer, 1988). It is important to understand the nature of
cognitive processing involved in SAT Mathematics. Gitomer (1988) pointed out
that students’ errors are often linked to an inability to conceptualize a
problem, to a failure to employ efficient problem—solving heuristic, and to a
lack of willingness to pursue difficult problems that cannot be solved
quickly.

Schoenfeld (1985) argued that some students have a view of mathematics
that it is simply equivalent to the learning of algorithms. However, Gitomer
(1988) developed a diagnostic test that was designed to measure knowledge,
execution referred to the procedural evaluation of a problem (such as
multiplying two polynomials), application involved in recognizing a procedure
to execute for a given problem, decomposition processes that require
decomposing a problem with multiple subgoals, and translation (that is, the
process of transferring a word problem into a representation that can lead to

a solution) had a strong relationship with mathematics grades.




Enright (1991) emphasized that understanding problem solving requires a
description of the problem as well as a description of problem solving
approaches and outcomes. Gallagher (1991) investigated sex differences on
cognitive tasks for SAT Mathema;ics and found that female students tend to use
algorithmic strategies as test-taking skills while male students tend to use a
systematic trial-and-error appréach regulated by some unknown reasoning. These
task variables are useful for guiding an analysis of the underlying cognitive
processes.

A task analysis of the SAT Mathematics, Form 8A, was performed by taking
the research results mentioned above into account. This report summarizes the
results of a task analysis and discusses an application of a measurement model
called Rule Space (Tatsuoka, 1983) to construct a descriptive scale for SAT
Mathematics. The approach is an outcome of a long-term research project
supported by the Office of Naval Research, and the model actually performs
individual diagnostic analyses of examinees’ response patterns. The results
can be used for enhancing learning, improving instruction, and remediation of
examinees’ weaknesses.

The model projects (or converts) examinees’ item response patterns into
their performance patterns on underlying cognitive tasks, which are identified
by a task analysis. A set of newly converted mastery patterns of cognitive
tasks (called attributes) enables one to estimate conditional probability
functions for attributes (PFAs) on the SAT Scale, or IRT ability scale 8.

The report gives some tailored prototypes of performance reports
suitable to various interest groups of test users. The last section discusses

the generalizability of attributes across two forms of the SAT M, Section 2.




METHOD AND PROCEDURES

1. A Task Analysis of SAT Mathematics
A description of the process that led to the specification of the

attributes employed in the rule space analysis is described in this Section.

1.1. A wmapping sentence The cognitive requirements for solving the
mathematics items of Sections 2 and 5 of SAT (form 8B administered on May 7,
1988) were specified using data from two protocols.

In order to summarize the content and process categories identified in
the protocol analysis, a mapping sentence (Guttman, 1991; Tziner, 1987) was
designed. The mapping sentence included 13 facets with a varying number of
elements in each. Before presenting the mapping sentence, a word of caution is
in order. The mapping sentence presented in Table 1.1 is a preliminary one. By

no means do we contend that it is complete or exhaustive. More insight into

Insert Table 1.1 about here

the cognitive requirements underlying the SAT-M items needs to be gained by a
comprehensive protocol analysis on several forms of the SAT before a complete
cognitive model can be constructed.

Every item in the test can be expressed as a combination of elements
from the facets of the mapping sentence. For example: Item No. 1, "If 2x - 6 =
10, then 3x - 6 =, (A) O, (B) 8, (C) 11, (D) 18, (E) 24 " can be
expressed in terms of the above mapping sentence as the following combination

of facet elements: A3.1.1, Bl, C2, D1, E2, Fl, G1, H1l, I2.1, J2, K3, L2, M1.




1.2, Making an incidence matrix Twenty-seven elements from the mapping
sentence were selected and expressed as attributes to be used in the initial

rule space analysis. Table 1.2.1 lists these attributes.

Insert Table 1.2.1 about here

An incidence matrix Q (60 items by 27 attributes) was constructed for
SAT Sections 2 and 5 using the above mentioned attributes. Table 1.2.2
presents the Q matrix al.ag with the percent correct responses for each item

and values of the IRT item difficulty parameter b.

Insert Table 1.2.2 about here

For ease of referencing, Table 1.2.3 lists the items requiring each of

the 27 attributes.

Insert Table 1.2.3 about here

1.3. A multiple regression analysis A multiple regression analysis was
performed to predict percent correct (of 60 items) from the 27 attribute

vectors. Table 1.3.1 presents the results of this analysis.

Insert Table 1.3.1 about here

As can be seen in Table 1.3.1, 83% of the variance in item difficulty
(percent correct) was explained by the 27 attributes. Attributes 8, 19, 6, 3,
2, 25, 27, 11, 21, 7, 4 had the highest regression weights. The negative
signs of these weights indicate that the presence of these attributes

contributes to the items being more difficult. Attribute 15 had a relatively




high positive weight, indicating that its presence is associated with easier
items.

Based on the regression results, the initial attribute set was reduced by
collapsing 10 of the content attributes into three categories and omitting
five weak attributes. The reduced set of 15 attributes is presented in Table
1.3.2. Table 1.3.3 lists the 25 items of Section 2 by the reduced set of 14

attributes. (Attribute 16 is relevant to Section 5 only.)

Insert Table 1.3.2 about here

Insert Table 1.3.3 about here

1.4. Analysis of SAT M, Section 2 The incidence matrix Q for items 1-25 of
Section 2 by 14 attributes (see Table 1.4.1) was subjected to multiple
regression analyses for predicting item difficulties (percent correct and IRT

b-values). The results of the two regression analyses are presented in Table

1.4.2.

Insert Table 1.4.1 about here

Insert Table 1.4.2 about here

As can be seen in Table 1.4.2, 83% and 91% of the variance in item
difficulty (percent correct and IRT b-values, respectively) were explained by
the 14 attributes. In both analyses the strongest attributes were Nos. 21, 19,
17 and 25 (analytic thinking; comprehension + application; understanding of

concepts; and multiple steps toward the solution).




The Rule Space Model has recently beca introduced in various ETS
technical reports (Tatsuoka & Tatsuoka, 1992; Sheehan, Tatsuoka & Lewis;
Birenbaum, Kelly & Tatsuoka, 1992). So a brief discussion will be given in the

next section and Appendix will provide a more detailed sketch.

Brief Discussion of the Rule Space Mode

An alternative approach to cognitive diagnosis — in contrast to the
traditional bug analyses — is the rule space model which is a probabilistic
approach whose purpose is to identify the examinees’ state of knowledge or
cognitive states, based on an analysis of the task’s cognitive requirements.

Having specified the task’s cognitive requirements (also called
attributes), an incidence matrix Q (K x n) (the number of attributes x the
number of items) is constructed, which describes item characteristics in terms
of the underlying cognitive processes involved in each item. Cognitive
patterns represented by K binary elements of unobservable attributes that can
be derived from the incidence matrix Q are called cognitive states (or
attribute patterns). Boolean Descriptive Functions (BDFs) are used to
systematically determine these cognitive states and map them into observable
item score patterns (called ideal item score patterns) (Tatsuoka, 1991; Varadi
& Tatsuoka, 1989). It is assumed that an item can be answered correctly if and
only if all the attributes involved in the item have been mastered.
Unobservable performances on the attributes can be viewed analogously to an
unobservable electric current running through various switches if they are
closed. A closed switch corresponds to an attribute that has been mastered.
All switches in a circuit must be closed in order for the current to go

through. The cognitive states are represented by a list of mastered/not




mastered (or "can/cannot") attributes. The increase of the number of states is
combinatorial, but Boolean algebra is a useful tool for dealing with the
problem of combinatorial explosion. Boolean algebra, which has been widely
used for explaining various properties of electricity and combinatorial
circuits have been utilized within the rule space framework for explaining the
cognitive requirements underlying test performances.

Once the cognitive states (ideal-item—score patterns) are determined,
the actual data are considered. The task now is to map the actual item
response patterns of the examinees onto the cognitive states, i.e., to find
the ideal-item—score pattern closest to the student’'s actual response pattern.
Since the performance on test items usually includes slips or random errors,
the observed item-rasponse patterns are likely to deviate.to some extent from
the ideal-item—s' ,re patterns represented by the various cognitive states.
Thus one is faced with a pattern classification problem which is handled by
the rule space model (Tatsuoka & Tatsuoka, 1989). The model formulates the
classification space and procedures. Item Response Theory (IRT) is utilized
for formulating the classification space, which is a Cartesian product space
of IRT ability © and a variable { which measures the unusualness of item score
patterns (Tatsuoka, 1984, Tatsuoka & Linn, 1983). The cognitive states as well
as the students’ item response patterns are mapped as points in the
classification space by computing their 8 and ¢ values. Tatsuoka (1990) has
shown that the swarm of mapped "fuzzy" points of students’ item-response
patterns follows approximately a multivariate normal distribution with the
centroid being a given cognitive state. Bayes' decision rules are applied for
the final classification and for computation of misclassification

probabilities.

10




Once this classification has been carried out, one can indicate with a
specified probability level which attributes a given examinee is likely to
have mastered or failed to master. If classification rates are as high as 80 %
or above, then the attribute mastery patterns can be used for statistical
analyses. For example, a factor analysis can be applied to examine the
dimensionality of attributes, or a discriminant analysis can be used for
investigating subgroup differences if the demographic information is
available. Similar to the estimation of Item Response Curves from the item
response patterns, it is possible to investigate the conditional probability

functions of the attributes defined on the SAT scale or IRT ©.

3. The Classification Results of SAT M., Section 2

A computer program, BUGLIB, classified 2335 examinees who took the SAT
M, Form 8A, into one of 600 cognitive states. Since the squared Mahalanobis
distance in this case follows a Chi-square distribution with 7 degrees of
freedom, x> = 2.76 (p=~.0l) is set as the first criterion for whether or not X
can be classified into a cognitive state. It turned out that 98 % of the 2335
examinees qualified according to the first criterion, and were thus classified
into one of 600 cognitive states. The examinees who were not classified are
mostly very high scoring students and their © values are larger than 2.5.
After Bayes’ rule was applied for the final classification, 468 cognitive
states become non—empty, with 136 states having one examinee classified, 64
states having 2 classified, 32 states having 3 classified, 26 states having 4,
14 states having 5, 13 states having 6, 13 having 7, 8 having 8, and 5 having
9. The states to which at least 11 examinees were classified are listed in

Table 3.1. One hundred thirty two examinees are

11




Insert Table 3.1 about here

classified into State 472, which is characterized by the deficiency of
attributes 2,19,21, and 25. State 2, which is characterized by the lack of
skill 21, has 180 examinees classified.

The 6-values and {-values for the cognitive states which are listed in

Table 3.1 are given in Table 3.2.

Insert Table 3.2 about here

Table 3.2 indicates some interesting trends for the lack of skills
across various levels of 6. For example, the low—ability examinees missed
Attributes 1, 3 and 21 (Arithmetic, advanced algebra and analytical thinking
skill) while high—ability examinees missed Attribute 21 and could do most
content areas except for advanced algebra. Probability Functions for the
attributes (PFAs) will provide us trends of the 14 attributes across 9.

However, before discussing PFAs, simple descriptive statistics of the 14

attributes are summarized. Table 3.3 shows the summary statistics of

Insert Table 3.3 about here

the 14 attributes and 6, { and five generalized {s. Attributes 21, 19, and 3
are difficult attributes while Attributes 18, 6, 15, and 23 are easy ones.
The means of O, { and five generalized (s are closer to zero and the standard
deviations are almost 1 as their theoretical means and standard deviations
indicate. The correlations of © with the 14 attributes range from .05
(Attribute 23) to .30 (Attribute 3). The correlations of { with the 14

attributes are between .14 (Attribute 19) and -.34 (Attribute 24), except for

12




that of Attribute 21 which is .58. The value .58 indicates that the behavior
of Attribute 21 is unusual, and examinees with unusual response patterns tend
to have the mastery score of one for this attributes. The dimensionality of
the 14 attributes is tested by computing the eigenvalues of the correlation
matrix of 14 attributes. The results of Principal Component analysis indicated
that the 14 attributes are not unidimensional. 0f course we could have
examined the dimensionality with better statistics such as Stout’s method

(Stout, 1987), but we will leave it for a future work.

4 abilities for Attributes

When examinees' item response patterns are classified into particular
states, their corresponding attribute mastery patterns are then known. We use
the attribute mastery patterns to estimate probability functions for the
attributes (PFAs). PFAs are the conditional probability functions defined on
6, and they describe the basic characteristics of the behavior for the
attribute variables. By looking at the graphs of PFAs, one can see the
relationships between the performances on the attributes and the IRT 6-scale
or SAT scale. Each attribute should have its unique curve, different from
those of the others. By comparing two curves, one can see which attribute is
harder. They may intersect at some point, with abscissa 6,. In that case there
is an interaction between item difficulty and ability level exists. Unlike
Item Response Theory, we do not restrict the possible forms of the conditional
protability functions by assuming that they belong to a prespecified family of
parametric functions such as logistic or normal ogive. Since our intention is
to "let the data speak for themselves," a nonparametric estimation approach is

adopted in this report.
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~ ric regression estimates as probability functions for
attrijbutes Non-parametric estimation of the unknown density function f from
a plot of frequencies, the histogram, has been well investigated by many
statisticians (Hardle, 1991; Scott, 1985). Several psychometricians have
applied these techniques to estimating Item Response Curves, which are not
density functions (Ramsay, 1991; Mokken & Lewis, 1982, Lewis, 1990).

Instead of plotting a histogram of observed frequencies, an PFAs for a
particular attributes constructed by first classifying examinees into bins b;
based on their estimated 8 values and then computing the proportion of
examinees in each bin who have been classified as having mastered the
attribute. These proportions are then plotted against 8 and smoothed.
Alternatively, examinees may be classified into bins based on their SAT Scale

scores. The PFA would then be plotted as a function of the SAT Scale score.

4.2 Results Using SPLUS on a SUN SPARC station, a computer program for
estimating Attribute was written. In the program, examinees were classified
into one of 12 bins based on their SAT Scale score. Figure 4.1 contains the

resulting PFAs for each of the 14 attributes.

Insert Figure 4.1 about here

The curves in Figure 4.1 are not well smoothed yet, but they should
suffice for the purpose of introducing the concept of PFAs for an attribute
variable to the reader of this report. Improved methods for estimation of PFAs

and estimation of confidence intervals will be given in a future report.
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4.3 Interpretation Once examinees’ SAT Scale scores are known, their
probabilities of mastering each of the attributes can be read off the curves

given in Figure 4.1. As an example, Table 4.3.1 provides attribute mastery

probabilities for the first eight examinees in the data set.

Insert Table 4.3.1 about here

Examinee 5 has a very high SAT Scale score, and he/she is doing very
well on most attributes except for 3,17,19, and 21. His SAT Scale score is
almost as high as Examinee 7, but his attribute sores are much lower for 17,
19, and 21. By looking at the profile of each student, one can get useful
information for remediation planning. Alternatively, by looking at the unit of

classrooms or schools, one can make useful curriculum design, or evaluation of

the past instruction or planning.

4.4 Percentile scores Mokken & Lewis (1982) developed a non-parametric,
Bayesian IRT model which is based on the Mokken-scale, and Lewis (1990)
developed an algorithm for estimating the x% threshold for a monotone
regression function. His program MonoReg2 (1990) computes the posterior mean
estimate of a percent point of interest. For example, Attribute 19 has 546 for

the 50% point, 277 for 25% point and 760 for the 75% point.

InserC-Figure 4.4.1 about here

Figure 4.4.1 shows the empirical curve for Attribute 19 and posterior
median estimates of selected values of the corresponding theoretical function

(connected by straight lines). With this method, a desired percent point and

15




its corresponding SAT scale score can be obtained. A summary table could then

be prepared, describing the location of the attribute on the SAT scale.

4.5. Enhancing score reports Enhancing a score report can be done by
utilizing the probability of successful performance on each attribute,
together with the information obtainable from item—level analyses such as
computing IRT conditional probabilities on 8. The incidence matrix Q can be
used to retrieve a meaningful subset of items that involves, say, "test taking
skills" or "higher level thinking skills". Therefore, the results from the
rule-space model can be used for preparing a variety of reports that are
tailored to different groups of test users. The purposes for using the test
reports may vary among different groups of test users.

The optimal use of test results should be recommended. If the audience
is higher educational institutes, test results are used for selection or
placement of applicants. Individual examinees in high schools may use test
results for guiding themselves for further study or remediation, and teachers
for evaluating their instructions, for designing of curricula and future
instruction planing. The test results can also be used for preparing reports
for group performance. Summary statistics of attribute-level performance as
well as item—1level performance can be useful for schools, for various
districts and state offices of education. The following figure gives an

example of what we can offer to the test users.

Insert Figure 4.5.1 about here

The data banks available for enhancing scoring reports consist of four

parts: 1) The score matrix, each row of which contains a student ID, an item

16




regponse pattern, a 6—-value, a {—value (an index for measuring atypicality of
a response pattern) and an attribute-mastery pattern; 2) the incidence matrix;
3) the probability matrix for indicating each item’'s success rate at various
levels of 6 and SAT scale; and 4) the probability matrix for indicating each
attribute’s mastery rate at various levels of © and SAT scale. The information
mentioned above, together with demographic information can provide test users
with a variety of reports tailored to different groups based on their needs
and interests. The following figures show prototypes of reports that can be

assembled from the database (see Appendix).

Figures 4.5.2, and 4.5.3

Figures 4.5.2 and 4.5.3 are prepared for examinees who are interested in
understanding their weaknesses and strengths, while Figure 4.5.4 is for a
class room teacher who is interested summary statistic and class evaluation.
Rearranging the probability matrix by the order of total scores and item

difficulties enables teachers and administrators to identify possible problem

areas (Birenbaum, 1992).

S5, Are the 14 Attributes Invariant Across Different Forms of SAT Mathematics ?
A replication study was carried out by applying the 14 attributes to a

different SAT form (0A March, 1990). Table 5.1 presents the incidence matrix

Insert Table 5.1 about here

for the 25 items of Section 2 of that form by the 14 attributes, along with

the item difficulties (percent correct).

17




Insert Table 5.2 about here

Table 5.2 presents the regression results for predicting item difficulties of
the 25 items of Form OA (section 1) from the 14 attributes.

As can be seen in the table, 91% of the variance in item difficulty
(percent correct) was explained by the 14 attributes. The strongest attributes
were Nos. 3, 21 20 and 25 (advanced algebra; analytic thinking; reasoning; and
multiple steps toward the solution, respectively).

Upon reviewing the items of Form OA an additional attribute was
introduced to the original set, namely, Attribute 26 "changing the unit of
measurement”. That attribute appeared in items 10 and 18 of Form QA, Section

2. The incidence matrix Q for the 15 attributes appears in Table 5.3.

Insert Table 5.3 about here

For ease of referencing, Table 5.4 lists the attributes involved in each
of the 25 items (Form OA, Section 2) and Table 5.5 lists the items that

involve each of the 15 attributes.

Insert Table 5.4 and 5.5 about here

A regression analysis of the incidence matrix with the additional attribute

(No. 26) is presented in Table 5.6.

Insert Table 5.6 about here

As can be seen in the table, 94% of the variance in item difficulties is

explained by the 15 attributes. The strongest attributes in this analysis are:

18




26, 3, 20 ,6, and 25 (changing the unit of measurement; advanced algebra;
reasoning; elementary geometry; and multiple steps toward the solution).

This routine multiple regression analysis suggests that the attributes
valid for one form may be valid for another form. However, it does not give
any direct information for assurance that an estimated PFA for Attribute A;
involved in one form will be very close to the estimated PFA from a different
form. If the construction of parallel test forms were to be based on the
matching of attributes across different forms, then our concern for invariance
of PFAs across the forms may not be so important. However, the current
practice of test construction procedures do not consider the underlying
cognitive attributes of test performance. The procedures emphasize matching of
content domains although SAT Mathematics tests is designed for measuring

reasoning rather than for measuring the competency in content domains.

Discussion
The influence of SAT Verbal and Mathematics tests on American education
is so noticeable that maximizing the amount of information obtainable from the
test scores, and searching for ways to utilize such information optimally are
very important. This study introduced a new way to construct a proficiency
scale by applying the rule space model,

The rule space model is a symbolic parametric model in which the
performances on unobservable cognitive tasks are inferred from observable item
scores. The inferred attribute-mastery patterns are used for estimating
Attribute Characteristic Curves defined on the 6 or SAT scale. The proficiency

scale in this paper is derived from these PFAs.
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Statistical matters such as construction of confidence intervals for
PFAs and further improvement of non-parametric estimation methods are not
discussed in this paper. The technical aspect of obtaining percentile scores
from PFA should also be sought in a future paper. A multidimensional rule
space has been introduced for the first time in this paper, but technical
details of the multidimensional space will be discussed elsewhere in the near
future.

A list of the 14 attritutes should be examined more carefully before the
proficiency scale for SAT M is to be used in practice. The regression analysis
and the rule-space classification don’'t necessarily provide the best unique
set of attributes. Instead, they can indicate whether or not these attributes
provide a useful representation of the underlying cognitive processes of the
test. There may exist other sets of attributes that are as good as the
original 14 attributes. Further investigation on the determination of the

optimal set of attributes is needed.
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Table 1.1
A Mapping Sentence For SAT-M

In order to solve item x, which represents a {ask with the following characteristics:
A
content

1. Arithmetic 1) basic operations with whole numbers

2) signed numbers operations

3) fractions, decimals

4) square root, exponents
2. Mathematics 1) properties of numbers, combinatorial, inequality

unit of measurement
3. Algebra 1) basic (1) linear equations
(2) simultaneous linear
2) advanced {g) quadratic eq;
) functions
4. Geometry 1) elementary (1) lines, rectangles
{ (2) triangles
) circles
2) analytic
5. Statistics 1) Probability
4 B c - D E
. context setting _, question type language of presentation -
{1. regular math {1 concrete {1. routine 1. verbal (word problems) {1) realistic context s
2. quantitative compari 2. abstract 2. non routine 2) imaginary
2. numerical i
3. spatial
F G - H - 1
answer response format susceptibility to "test wiseness”

Q. Structure
Logic_(if...then) | 1. exact number 1. multiple choice 1. low
{l. yes 2. spproximation) {2. constructed (grid) high{l)opdonsmbemedbguﬂxemw}
ons

2 no 3. varisble 3. stem includes opti 2) cai be solved intuitively / by example
| 3) visual solution possible
J K L

and which the solution_process involves: _ no. of steps requiring to read calculator

1. one 1. charts 1. not needed

2. two 2. figures 2. can be helpful

3. three 3. math notati 3. needed
the examinee has to demonstrate the following:

M
Processes

1. Application of simple rules/algorithms (perform computations)
2. Comprehension + application of rules/theorems/definitions/principals/laws
3. Translation from one mode to another
4. Creation of an equation with )'1) one unknown
\2) more than one unknown/.

. Analytic thinking }1) decomposition of a simple problem and restructuring

2) decomposition of a complex problem
6. Reading comprehension J1) general

2) specific terminology
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Table 1.2.1

.SAT-M 27 Auributes
Auribute Attribute’s Description
No.
A.Content related attributes
1. Arithmetics (+ - X : ; signed #s; # line; (); factoring, properties of #s;

combinatorial).
4. Arithmetics - fractions (+ ratio; decimals; probability; %)
5.  Arithmetics - exponents (+ sq. root).
22. Arithmetic - inequality.
2. Algebra - linear equations (+ simultaneous linear).
3. Algebra - quadratic equations.
27. Algebra - Functions (+ relationships between number and symbols).
6. Geometry - lines; rectangles.
Z . Geometry - triangles.
26. Analytic geomen'y/luding charts.
9. Measurement related concepts.

10. Nonroutine problems (nonconventional).

11. Language of presentation: Verbal (Word problem).

12. Language of presentation: Numerical (math notations)

13. Language of presentation: V + Spatial (figure given).

14. Language of presentation: V + Spatial (ﬁgm'e to be drawn).

15. Logic (if...then).
16. Quantitative comparisons.
B._Process Related Attributes

17. Understanding of the meaning of concepts.

18. Application of simple rules/algorithms (SOLVE: perfform  computations).

19. Comprehension + application of rules/theorems (chooses and applies
correctly).

20. Reasoning (creates an equauon)

21. Analytic thinking, cognitive restructuring (higher mental processes).

23. Reading comprehension (+ follow instructions; math/geometry terminology).

24, Tcst-wxs)cn&ss (solves intuitively; by example; goes backwards from the given
answers).

25. Number of steps in the solution > 1
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iapic 1.2.2

Incidence Matrix Q for 27 Attributes and 60 SAT-M Items

Attributes

hem

No. 123456789
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Note:

Items 1-25 are from section 2 and items 26-60 are from section S
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Table 1.2.3
Items Required in Each of the 27 Attributes

Attribute Items (1-60)

01 3,4,8,9, 11, 16, 20, 26, 27, 23, 38, 39, 40, 41, 42, 44, 54, 56, 58

02 1, 11, 19, 23, 25, 43, 50, 51, 54, 57, 58, 59

03 13, 51

04 2,5, 10, 11, 13, 15, 19, 25, 33, 35, 36, 45, 47, 48, 59, 60

0s 2,6,13,21,29

06 14, 17, 24, 30, 32, 37, 49, 52, 53, 55

07 7, 10, 24, 34, 46, 52, 57

08 18, 22, 60

09 12, 25, 28, 35, 48, 53

10 8, 11, 12, 16, 19, 20, 23, 25, 28, 30, 31, 32, 41, 42, 44, 50, 54, 55, 58, 59

11 8, 11, 12, 16, 19, 20, 22, 23, 27, 28, 34, 41, 42, 47, 53, 54, 56, 58, 59

12 1,2,5,6,9, 13, 15, 21, 26, 29, 31, 33, 35, 36, 40, 43, 44, 45, 48, 50, 51

13 3,4,7, 10, 18, 24, 25, 30, 32, 37, 38, 39, 46, 57, 60

14 14, 17, 49, 52, 55

15 1,5, 6, 8, 11, 13, 14, 15, 18, 19, 22, 24, 27, 28, 31, 53, 54, 56, 60

16 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52

17 14, 21, 31, 32, 34, 35, 41, 42, 45, 47, 48, 49, 55, 59

18 1,2,3,4,5,6,9, 10, 11, 12, 13, 15, 19, 21, 22, 23, 24, 25, 26, 27, 29,
36, 37, 40, 41, 42, 43, 46, 50, 53, 57, 59, 60

19 10, 18, 24, 52, 57, 60

20 7, 8,11, 16, 18, 19, 20, 22, 23, 24, 25, 27, 28, 31, 51, 53, 56

21 17, 23, 24, 25, 49, 50, 55, 56, 58, 60

22 22, 33, 45, 54

23 3,7, 8, 14, 17, 20, 21, 22, 23, 30, 31, 32, 41, 42, 44, 47, 49, 54, 56, 60

24 5,7, 8, 20, 28, 29, 51, 54, 56, 58

25 1, 3, 4, 10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 39, 41, 42, 49, 50, 52,
55, 56, 58, 59, 60

26 3, 4, 38, 39, 56

27 21, 31
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Table 1.3.1

Multiple Regression Results: Predicting Item Difficulties from 27 Attributes.

Attribute b SEb t

Al .02 6.61 .01
A2 -19.54 6.41 -3.05%»#
A3 -21.67 11.36 -1.91*
Ad -11.51 5.47 -2.10%*
AS -4.44 8.84 -.50
A6 -21.80 10.10 -2.16**
A7 -12.35 11.25 -1.10
A8 -29.39 16.56 -1.78*
A9 -10.46 7.33 -1.43
A10 -2.78 6.27 -.44
All -14.92 12.10 -1.23
A2 -8.11 12.67 -.64
Al3 3.03 10.55 .29
Ald () 0.00 0.00 0.00
AlS 110.57 551 1.92¢+
Al6 -7.90 5.38 -1.47
Al7 -4.18 6.38 -.66
AlS8 -1.92 5.51 -35
Al9 -26.93 10.84 -2.48%*
A20 -4.32 6.01 -72 -
A21 -13.44 6.28 22,144+
A2 -3.76 8.51 -.44
A23 -8.57 5.10 -1.68
A2 -8.45 6.59 -1.28
A2S -16.711 5.44 -3,08%*#
A26 -4.75 11.72 -.41
A27 -15.87 13.86 -1.15
R2 =0.83

Note:

Al o A27 : Initial set of attricuics (see Table 1.2.1).

Y : Percent of correct responses (as reported in "Taking the SAT 1990-91).
Number of items: 60 (1-25 from Section 2; 26-60 from Section 5).

(-) Parameter not estimated (A 14 is a linear combination of A1l1, A12, A13)
* p<10. ** p<.0S5. ***p<Ol.




Table 1.3.2

The Reduced set of 15 Attributes

Attribute Atribute's Description

No.

17.
18.
19.

20.
21.
23.

24.

25.

A. Content related attributes
Arithmetics (including content of attributes: 1, 4, 5, 22).
Elementary Algebra (including content of attributes: 2, 27).
Advanced Algebra.
Elementary Geometry (including content of attributes: 6, 7, 8, 26).
Word problems.
Logic (if...then).

. Quantitative comparisons®.

B._Process Related Attributes
Understanding of the meaning of concepts.
Application of simple rules/algorithms (SOLVE: perform computations).
Comp:t-leh)cnsion + application of rules/theorems (chooses and applies
correctly).
Reasoning (creates an equation).
Analytic thinking, cognitive restructuring (higher mental processes).
Reading comprehension (+ follow instructions; math/geometry terminology).
Tcst-wis)en&ss (solves intuitively; by example; goes backwards from the given
answers).
Number of steps in the solution > 1

* Applies to section 5 only.
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Table 1.3.3

The 25 items of section 2 Listed by the Reduced set of 14 Auributes

Auribute

Item
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Table 14.1

Incidence Matrix Q for 14 Attributes by 25 Items and the Item Parameters

(IRT: a's, b's) and Percent Correct

IRT

b's
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Table 1.4.2

Multiple Regression Results: Predicting Item Difficulties for Items 1-25 from 14

Attributes.
Proportion Correct IRT b-values
Attribute b SEb B t b SEb B t
25 -16.06 8.53 -33 -1.88 .85 31 35 272+
23 -438 12.85 -.09 -43 21 47 .08 45
21 -36.60 12.52 -57 -2.92+ 2.35 46 70 5.10%*
11 -13.84 1194 -27 -1.16 .84 44 32 192
03 -2146 172.77 -18  -1.21 75 .65 12 1.14
15 -2.81 7.24 -.06 -39 26 .27 11 .98
02 3.69 12.89 .07 .29 -42 47  -.15 -.89
01 -5.29 9.45 -.10 -.56 36 .35 14 105
24 -29 13.59 -.00 -.02 -16 50 -05 -32
19 -19.39 1542 © -27 -1.26 h26 .57 33 222
18 -144 1156 -.03 -13 .23 43 .09 .55
17 -2697 17.40 -31 -1.55 1.35 64 30 210
06 6.61 1248 11 45 -.57 46 -22 -1.24
20 -12.54 13.43 -.26 -93 .37 .49 15 .76
a 89.00 12.59 -2.06 46
RZ 83 91
R2y4;. .59 .79
* p<.05 ; ** p<.001

32




Table 3.1

A list of Cognitive States in which at least Five
Percent of Examinees are Classified (N = 2334)

Cognitive Frequency Attribute Mastery

States

217
218
220
221
222
253
257
261
268
269
273
277
468
469
472
473
474
475
476
477
478
488
502
520
547

Pattern

1111122222
12361578901345
11111111111111
11111111110111
11111101111111
11011111111111
11011111110111
11011101110111
11111111011111
11111111010111
11111101010111
11011111010111
11010111110111
11110101010111
11010111010111
11111111100111
11111111110101
11011111110101
11111101110011
11011101110011
11111101010011
11011101010011
01011111111111
01011111110111
01011111010111
01011101011111
01011101110111
01011101010111
10111111110111
10011111110111
10111111010111
10110111111111
10110111110111
10010111110111
10110111010111
11111111010110
11111101010110
10111111010110
10111101010110
10011111010110
10011101010110
10110111010110
10110101010110
10010111010110
10111111000110
11111111010100
10011001010110
00011111111111

33

Attributes not
mastered

21

17

3

3, 21

3,17, 21

19

19, 21
17,19,21
3,19,21

3, 1,21
11,17,19,21
3,11,19,21
20,21

21,24

21,24

21,23
3,17,21,23
17,19,21,23
3,17,19,21,23

17,19,21,25
2,19,21,25
2,17,19,21,25
2,3,19,21,25
3,17,19,21,25
11,19,21,25
11,17,19,21,25
3,11,19,21,25
19,20,21,25
1,24,25
1
3

5,17,19,21,25

HFNENNDDODNODNDND

‘11
'19
9.2

3
2




Table 3.2 Ability Levels and Atypicality of Cognitive
States (sorted by @ values)
Cognitive Frequency 8 4 Attributes not
States mastered
1 19 5.00 0.52
5 18 3.06 1.43 3
9 37 1.98 0.67 19
2 180 1.83 -1.37 21
6 94 1.40 -0.59 3,21
10 46 1.14 -0.69 19,21
32 1.12 -0.55 17
66 87 0.88 0.16 21,24
14 30 0.83 -0.01 3,19,21
8 11 0.82 0.14 3,17,21
12 28 0.61 -0.22 17,19,21
70 11 0.60 0.94 21,24
253 43 0.59 0.06 2,21
257 15 0.34 0.55 2,3,21
261 30 0.15 -0.06 2,19,21
126 25 0.04 0.52 21,23
34 17 0.01 -0.74 20,21
268 11 -0.02 0.79 2,11
22 | 18 -0.17 -0.26 3,11,21
128 . 14 -0.19 0.88 3,17,21,23
269 31 -0.35 -0.51 2,11,21
138 - 40 -0.35 0.19 17,19,21,23
30 38 -0.54 -1.18 3,11,19,21
273 12 -0.56 -0.54 2,3,11,21
140 16 -0.57 0.26 3,17,19,21,23
28 12 -0.71 -1.58 11,17,19,21
277 13 -0.71 -1.37 2,11,19,21
468 67 <0.75 -0.45 19,21,25
469 18 -0.91 -0.10 17,19,21,25
472 132 -1.11 -0.33 2,19,21,25
473 25 -1.12 -0.32 2,17,19,21,25
488 } 11 -1.13 0.07 2,19,20,21,25
502 16 -1.13 0.70 9,21,24,25
474 32 -1.16 -0.87 2,3,19,21,25
476 39 -1.24 -0.64 2,11,19,21,25
257 15 -1.32 -0.65 2,3,17,19, 21 25
477 16 -1.40 -0.40 2,11,17, 19 21,25
478 36 -1.45 -1.00 2,3,11,19,21, 25
215 12 -1.49 2.32 1,3
547 11 -1.81 1.82 1,2,3
217 30 -1.99 -0.11 1,3,21
220 13 -2.02 0.66 1,3,17,19
520 33 -2.07 -0.69 2,3,15,17,19,21,25
218 14 -2.22 -0.82 1,3,19,21
221 24 -2.25 -0.18 1,3,17,21
222 22 -2.55 -0.90 1,3,17,19,21
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and Generalized {s (N = 2334)

Table 3.3 Descriptive Statistics of the 14 Attributes and O, {

35

Attributes mean S.D. Corr. with & Corr. with {
1 .896 .305 .25 -.11
2 .631 .483 .21 -.03
3 .542 .498 .30 -.17
6 .958 .201 .16 -.25
11 .764 .425 .21 -.01
15 .939 .240 .19 -.12
17 .668 G471 .25 -.18
18 .978 .152 .15 -.14
19 .461 .499 .22 .14
20 .879 .326 .19 -.01
21 .213 .409 A1 .58
23 .901 .298 .05 -.11
24 .807 .395 .17 -.34
25 .790 .408 .15 .27
Dimension mean S.D.
e .060 1.200
4 -.147 1.067
<1 -.089 1.002
¢ -.050 .992
{3 02055 1.028
¢4 -.076 1.010
{s -.027 1.008




Table 4.3.1 Examples of Probability Vectors for the First Ten
Examinees

14 Attributes

ID SAT

1

2

3

6

11

15

17

18

19

20

21

23

24

25

500
640
420
510
730
340
790
230

O NOYWL £ W -

93
98
89
9%
100
80
100
53

65
75
59
65
82
53
86
44

59
73
49
60
79
36
83
17

98
97
97
98
100
93
100
71

82
84
75
82
87
64
99
46

96
99
9%
96
100
89

74
80
71
75
75
49

100 100

66

21

99
100
97
99
100
94
100
90

47
58
41
47
66
36
72
28

89
96
85
89
100
81
100
75

15
23
13
14
37
26
79
32

92
90
92
91
91
88
94
78

82
86
82
82
89
74
99
52

77
86
76
77
95
75
100
68
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Table 5.1

Form OA: Incidence Matrix Q for 14 Attributes and 25 Items

Item
No.

2066997561148716558042318
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OHHHOHOFHOMOHOOOOHMOOOO MO
N™ NMwnOr Ao 4o 0N
oo At Al HNNNNNN

~t LNV ONO
o OCO0OO0O0O0OOrm
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Table 5.2
Multiple Regression Results: Predicting Item Difficulties of 25 Items

(Form QA Section 2) From 14 Auributes.

Atribute b SEb Bt
25 -14.60 9.00 -31 -1.62
11 .85 8.36 02 .10
17 3.10 7.91 .07 .39
06 -9.80 9.78 -.19 -1.00
24 6.43 7.86 11 .82
20 -17.38 7.97 -33 -2.18
19 -10.69 7.05 -20 -1.52
03 -23.12 9.41 -44 -2.46*
02 8.42 7.69 .16 1.10
23 6.57 9.52 .13 .69
21 g -19.19 7.68 -.40 -2.50*
-01 -1027  8.05 -21 -1.28
18 1.65 9.02 .03 .18
15 -1.29 12,67 -.03 -.10
a 81.47  19.97

RZ : 91

R2a4j. . .78

* p<.05 . ** p< .001
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Table 5.3

Incidence Matrix Q for 15 Attributes and 25 Items (Form OA section 2) and Percent

Correct

2066997561148716558042318

9980343933831569491126059
DO~ TVOONANTOMANNNNNNNA

000000000 HOO0OO0O0OOMOOO00O000O
0000 HOOOOHOHOMNOOHHHO HH
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000000 HOMOHMOMMHMOOOOFHOO MO
00000000000 HHHOHHMHMHMHMOH
0CO0OHHOOOOOOHOHOOOOOOHHO
COO0OHOOOOOOHOOHOOOOHOOO m rir
HOHAHHOHOMHOOFHMHOOHOHOHHO
OCrHOOMHAHOAHOOOOHHMHOHOHHHOOH
AAHOHOHOOOOHOOMHMOOHHOMHO
O HOAMHOHAHANHOHOOMHOOOHOH
000000 HOHOHOOMMHHOOHOOMOOO
00000000000 OHHOOHOHHHOOHO
OO HHOOOOHOOHOOOHOHOOOOOO
OrMrHHOHOHOHOHO@OOHHOOOOHOH

HANM WO ON
OCO0000O00O000O
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Table 5.4

The 25 Items (Form OA Section 2) Listed by the 15 Attributes

Item Attribute Item Attribute
01 2,15, 18

02 1, 11, 15, 17

03 1, 11, 15, 18, 24

04 1,2, 15,18, 19, 24

05 2,11, 17, 18, 20, 25

06 1, 11, 15, 17, 18, 20, 07, 6, 11, 17, 23
08 1, 15, 18

09 6, 11,17, 23

10 1, 2, 11, 18, 25, 26*

11 6, 11, 19, 23

12 1, 11, 23, 24, 25

13 2,3,11, 15, 18, 20

14 3,6,17, 18, 19, 21, 23, 25

15 6, 11, 17, 20, 21, 23, 24

16 6, 15, 17, 21

17 1,2, 3,15, 18,25

18 1, 11, 17, 21, 25, 26

19 2,3,6,11, 18,19, 21, 25

20 3,15,17,21,23

21 3,15, 17, 18, 21, 25

22 6, 17, 18, 20, 21, 25

23 1, 11, 15, 19, 20, 21, 23, 24, 25
24 3,15,18, 19,25

25 1, 11, 17, 18, 19, 20, 21, 23, 25
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Table 5.5

The 15 Attributes Listed by the Items in which They Are Required

Attribute Items (1-25 form OA section 2)

1 2,3,4,6,8,10,12,17,18, 23,25

2 1,4,5,10, 13,17, 19

3 17, 19, 20, 21, 24

6 7,9, 11, 14, 15, 16, 19, 22

11 2,3,5,6,7,9, 10, 11, 12, 13, 15, 18, 19, 23, 25
15 1,2,3,4,6, 8, 13, 16, 17, 20, 21, 23, 24

17 2,3,5,6,7, 14, 15, 16, 18, 20, 21, 22, 25

18 1,3,4,5,8, 10, 13, 17, 19, 22, 24, 25

19 12, 14, 19, 25

20 10, 13, 15, 22, 23, 25

21 12, 16, 18, 19, 20, 21, 23

23 3,7,9, 11, 12, 14, 15, 23, 25
24 34,12, 15,23

25
26

5,10, 12, 14, 17, 18, 19, 21, 22, 24, 25
1,18




Table 5.6
Multiple Regression Results: Predicting Item Difficulties (percent correct) for Items 1-25

(Form OA Section 2) From 15 Attributes.

Attribute b SEb B t

26 -26.35 12.57 -.30 -2.10
17 -.49 7.05 -.01 -.07
03 -23.53 8.13 -44 -2.89%
23 -.53 8.89 -.01 -.06
20 -20.72 7.06 -39 -2.93*
06 -17.82 9.28 -.35 -1.92
19 -12.38 6.15 -23 -2.01
24 2.04 7.10 - .03 .29
11 1.22 7.23 .03 17
25 -16.94 7.86 -36 -2.16
02 9.23 . 6.65 17 1.39
18 297 " 8.10 -.06 -.37
o1 -6.61 7.17 -14 -92
21 -12.63 7.33 -.26 -1.72
15 -13.27 12.35 -.28 -1.07
a 98.41 19.06

R2 94

R24j. .83

* p<.05
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Figure
Figure
Figure

Figure
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List of Figures
Conditiona. Probability Functions for 14 Attributes
Response Function for Attribute 19, SAT Mathematics
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A Prototype Student Report 2

A Prototype Report for a Classroom Teacher
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Response Function for Attribute 19, SAT-M

Probability of Mastery

200 300 400 500 600 700 800
SAT-M Scale

Attribute 19 represents the ability to comprehend and apply rules and theorems correctly.

The figure shows an empirical attribute response function (points denoted by x) and
ior median estimates of selected values of the corresponding theoretical function

posteri stima
(connected by straight lines).
The posterior mean estimate of the 25% point for this function is 277.

The posterior mean estimate of the 50% point for this function is 546.
The posterior mean estimate of the 75% point for this function is 760.
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1) A student report, Kumi Tatsuoka

SAT percentile score based on item-level: 60

Your percentile scores on the content area are:

Arithmetic...... Y
Algebra............ C
Geometry........... C
Miscellaneous...... D

Performance underlying cognitive processes:
Understanding the meaning of concepts..... c

Application of simple rules/algorithms
(solving equations, computation, derivation
of simple algebraic expressions).......... A

Comprehension and application of
rules/theorems, principles correctly...... C

Reading comprehension (+follow
instructions;math/geometry terminology)... B

Reasoning (create an equation, identifying
components and follow procedures)......... c

Analytic thinking, cognitive restructureing
(higher mental processes)................. D

Strategies (trial-and-errors by plug in
mmbers, make an inference of the correct
ansver from options with unknown systematic
methods......coovviiiiniinererecannnnnaas C

A: top 10 percent

B: 70 - 89 percentile
C: Average

D: 30 - 49 percentile
E: 10 - 29 percentile
F: bottom 10 percent
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2) A student report for Jane Smith

SAT-scaled score based on item performance: 600

Probability of success on attribute(s) associated with:
Mean at Your
600-level score

Arithmetic"..‘....'..0........0..0......... 97% ok
ElementaryAlgebra"....'.’...'.........Q... 72* no
Advanced algebra....II........'....'.I...... 69* no
Geometry...............Q...............‘.‘...97% ok
Understanding the meaning of concepts....... 76 % ok
Application of simple rules/algorithms

(solving equations, computation, derivation

of simple algebraic expressions).......... 100 % ok
Comprehension and application of

rules/theorems, principles correctly........ 54 % no
Reading comprehension (+follow

instructions;math/geometry terminology)..... 90 % no
Reasoning (create an equation, identifying

components and follow procedureS)....c...... 94 % no
Analytic thinking, cognitive restructureing

(higher mental processes) ....ccceeccecccecees 17 % ok
Strategies (trial-and-errors by plug in

numbers, make an inference of the correct

answer from options with unknown systematic
methods........I...'.....‘.O.'............I. 85% ok
Mastery of complex problems with steps > 1.. 82 % ok

Additional Comments:

Your performance pattern is rather unusual, so we provide you
with your diagnosed cognitive state on the right most side of
the above table.

we recommend that you practice word problems and pay more
attention to the meaning of principles, theorems and
properties.

You should also follow the instructions more carefully.
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1I. A report for a class room teacher

Class size 10, five girls and five boys
junior year, Teacher is Mrs Smith

The mean of SAT-scale score: 450

The standard deviation
names SAT percentile

scale rank
1. Donald Duck 750 95%
2. Wylie Cayote 540 61s
3. Mickey Mouse 605 80s
4. Olive Oyl 680 90s
S. Bo Peep 442 67%
10. Charlie Brown.590 69%
Average 620 74%

s.D. 42

30

attributes
Al A2 A3 AL AS

90
81
82
88
43

75
76

85
64
71
67
53

60

72

50
55
62
32
65

50
65

5 7 8

49

85
42
40
97
24

40

54
10

60
89
80
65
35

85
67

A6 A7

77 81
45 32
55 54
46 98
36 56

46 42

51 46

A8

92
75
67
63
46

77

43
12

A9

65
18
32
88
67

29

25
17




APPENDIX
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Appendix I

The rule-space-model has recently been introduced in various ETS
technical reports (Tatsuoka & Tatsuoka, 1992; Sheehan, Tatsuoka & Lewis, 1993;
Birenbaum & Tatsuoka, 1993; Birenbaum, Kelly & Tatsuoka, 1993). This paper
emphasizes the introduction of the procedures that lead to probability
functions for attributes (PFAs), which are applied to SAT Mathematics tests.
An PFA is the conditional probability function for successful performance on
each attribute at given IRT ability level 8,

Puc(8®) = Prob( Ay, = 118), k=1, 2, ...... , K (1)
Since PFAs are defined on the IRT ability variable 8 or equivalently, on the
SAT scale that are obtained by transforming the 6-scale, each scale point is

associated with a probability vector of the cognitive attributes.

1. An Incidence Matrix and All Possible Ideal-Item—Score Patterns

Tatsuoka (1990) organized the underlying cognitive tasks that are
required in answering test items in an incidence matrix, Q-matrix, whose rows
represent attributes (i.e., knowledge, cognitive processes and skills etc.)
and columns represent items. The entries in each column indicate which
attributes are involved in the solution of each item. The incidence matrix of
order that relates the 25 items in Section 2 of the SAT M with the 14
attributes selected in the previous section is used for deriving all possible
ideal-item—score patterns which correspond to attribute mastery patterns
(Tatsuoka, 1991). The expression "ideal-item—score patterns” will be used
hereafter to refer to logically determined knowledge states, as contrasted

»
with the examinees’ actual item-response patterns. The logically determined
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ideal-item—score patterns also represent classification groups, which
correspond to the attribute mastery ypatterns. The ideal-item-score patterns
are the images of a Boolean Descriptive Function (BDF) that is defined on the
lattice of attributes. The BDF takes the value of either one or zero, for
right or wrong on the items. The definition of the BDF can be stated by
hypothesizing that "if Attribute A, cannot be done correctly" or equivalently
"if Ay is not mastered" then the items involving A, cannot be answered
correctly. The value of one for A, means that "one can do A, correctly" which
is equivalent to "mastery of A " (Tatsuoka, 1991).

An algorithm that was developed by Varadi & Tatsuoka, 1989 produces all
possible ideal-item—score patterns from an incidence matrix. An intuitive
illustration is given by Tatsuocka (1993). A computer program BUGLIB (Varadi &
Tatsuoka, 1989) produced more than 3000 ideal-item—score patterns for the
incidence matrix of order 27 x 60 in Table 1.2.3, and 600 for that of order 14
X 25 associated with Table 1.3.3. Since the current form of BUGLIB cannot
further analyze data from more than 2000 groups, the discussion in this report
is restricted to the analysis results from Table 1.3.3, which relates to
Section 2 of SAT M, Form 8A. Table A.l shows a partial list of the 600 ideal-

item~score patterns.

Insert Table A.l1 about here

The first 25 columns after the IDs give the ideal-item-score patterns,
followed by the two columns showing the values of @ estimated by the Maximum
Likelihood Methou and ¢ (Tatsuoka, 1984, 1985; Tatsuoka & Linn, 1983), and the

last 14 columns show the corresponding attribute patterns. The m—th ideal-
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item—score pattern is the image of the m—th attribute pattern by the BDF. The

variable ¢ will be described in Section 2.3.

2. A set of "fuzzy" response patterns There are 2!¢ possible attribute
patterns for 14 attributes, but the BDF reduces the number of reliable
attribute patterns to 600. These 600 attribute patterns correspond to 600
ideal—-item—score patterns. Conceptually, an item-response pattern that does
not correspond to one of these 600 ideal-item—score patterns is considered to
be a "fuzzy item patterns" produced by slips. Slips are regarded as deviations
from an ideal-item~score pattern.

Bayes' decision rules for minimum error are known to produce optimal
classification and are also known to be relatively unaffected by the
distribution of scores in a group. Application of Bayes’ decision rules to our
classification problem requires that the distribution of each cognitive state
should be obtained statistically.

Tatsuoka & Tatsuoka (1987) introduced a slippage random variable and
slippage probabilities for the items, and explained fuzzy response patterns as
outcomes of inconsistent performance. The fuzzy response patterns around each
ideal-item score pattern will cluster together. They showed that a set of
fuzzy response patterns around an ideal-item-score pattern follows a compound
binomial distribution with slippage probabilities for each item. Falmagne
(1989) formulated a model that estimates these slippage probabilities,

However, if the number of cognitive states is as large as 600, we would
need an enormously large sample for estimating the parameters of the model
such as latent class models. An efficient algorithm for estimating very large

numbers of state parameters has not been developed yet. The rule space model
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does not require the estimation of state parameters because it is an
analytical approach, and the probabilities of state membership for an

individual will be obtained through a classification procedure.

3. Classification space and bug distributions The rule-space model takes a

statistical pattern classification approach to achieve classification of
examinees into one of 600 cognitive states. An advantage of this approach is
that the problem of combinatorial explosion is treated geometrically by
mapping all patterns — both the examinees’ response patterns and ideal-item—
score patterns — into a vector space in which an appropriate distance is
defined. Moreover, the dimension of the classification space usually equals
the number of groups, in our context the number of cognitive states, but the
model reduces the dimension of, say 600, to as few as two dimensions. If two
states are similar in terms of mastery of the attributes, they are located
close to each other in the rule space.

The vector space is a Cartesian Product space of © and the image of a
mapping function f(x, ©) defined by Equation 2.3.1,

£f(X, o)

(P;(8) -X, P;(8) - T(8))

bX; + bX;, + ... + b X, + constant. (2)
Since this function is continuous, the fuzzy response patterns around a given
ideal-item—score pattern, R, will be mapped onto points in the vicinity of the
image of R, £(83, R), and 6;. These image points are denoted by {(€gz, f(6g,
R)). In practice, £(8¢, X) for any X will be standardized and denoted by (.
The second coordinate, f£(8z, R) will be replaced by ¢{z. We assume that these

points (the images of fuzzy response patterns) swarm around R, and that ((6g,
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fr)) follow a bivariate normal distribution (Tatsuocka & Tatsuoka, 1987:
Tatsuoka, 1990), called a "bug distribution".

The cognitive state R whose 63 is in somewhere between -3 and +3, but
for which the absolute value of ¢{; is larger than 3 may not really exist
(Tatsuoka, 1984). If the values of { for some states are close to zero, many
examinees will be classified into such states.

The mapping by f may not be one-to-one, but DiBello and Baillie {1992)
proved that f is indeed almost one-to-one everywhere. The cases for the
mapping not being one-—to-one will never happen when the IRT parameters a; and
b; are estimated from a real dataset. The standardized f(x,8), ¢, will be the
y-axis of the classification space, called Rule Space (Tatsuoka, 1985).
However, the name "Rule Space" may be misleading because the mapped cognitive
states can be misconception states, knowledge states or even be personality
states. Tatsuoka (1985) showed that the expectation of f(x,8) is zero - .d the

variance is given by 3,

(3
Var(f(x, 8)] =} P;(8)Q;(8)(P;(8) - T(8))?

J

The configuration in rule space is something like what is shown in

Figure 1.

Insert Figure 1 about here

In this figure, the ellipses represent equal density contours for the
bug distributions. The covariance matrix of a bug distribution will be a
diagonal matrix with the variances of @ and ¢ as the diagonal elements since

these variables are uncorrelated (Tatsuoka, 1985).

55




4, Classification Procedure Suppose an examinee’s response patterns are
mapped into the rule space. Then, the distance D? between the individual
examinee’'s point, (8,, {,) and the centroid (83, ¢g) of the bug distribution R
is given by (4), since the covariance matrix Z of the distribution is as shown
in Equation (5).
D? = (8, — 6x)%/(1/1(8R)) + (§x = CR)Z. (4)
1/I(8) 0©
l 0 1i (5

The Mahalanobis distance (4) follows a Chi-Square distribution with two
desrees of freedom (Lachenbruch, 1975). Suppose an examinee’s point X is
classified into one of the 600 predetermined groups (or, equivalently,
knowledge states) determined from Table 1.3.3. Then, 600 Mahalanobis distances
are first computed. If the criterion value of xzz is set to 4.605 (p=.25),
then the cognitive states whose Mahalanobis distance D? from X is less than
4.605 will be considered as eligible cognitive states for classification of X.
If there is no cognitive state whose Mahalanobis distance from X is less than
4.605, then X will be left unclassified.

Suppose States R; and R, are tue two closest ones to X, that is, which
have the two smallest Mahalanobis distances from X; then Bayes’ decision rule
for minimum error will be applied to them to determine the final group for X,
and the total classification error will be computed (Tatsuoka & Tatsuoka,
1987). If the covariance matrices of two states are almost identical, as they
are in cases with which we deal, and their distributions are normal, then the
Bayes' decision rule becomes equivalent to considering a linear discriminant

function. That 1s, the negative of the logarithm of the ratio of the
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posterior probabilities of R; and R, for X will be a linear function under the
normality and equal covariances conditions.

Kim (1990) examined the effect of violation of the normality requirement
with simulated data in the rule space, and found that the linear discriminant
function is robust against this violation. Kim further compared the
classification results by the linear discriminant functions and K nearest
neighbors method, which is a non-parametric classification approach and does
not assume the normality of a bug distribution, and found that the linear
discriminant functions performed better.

Suppose R; is the cognitive state to which X belongs, then the response
pattern X and the ideal-item—-score pattern for R, should be close to each
other. Since R; corresponds to an attribute mastery pattern Ag,;, the response
pattern X also corresponds to Ag; with high probability. In other words, the
response pattern X is converted to the attribute mastery pattern corresponding
to R;.

Since the bug distribution for R; is assumed to be bivariate normal, the
posterior probability of R; given X can be computed by using the prior

probability of R,, as discussed in Tatsuoka & Tatsuoka (1987).

5. Multidimensional Rule Space and Generalized Zetas After mapping 600
ideal-item—score patterns into the Cartesian Product space of 8 and {, the
images of these 600 ideal-item—score patterns may become too close and too
crowded, that is they may be too densely packed on the plane for
classification purposes. If the mapped cognitive states are not well

s arated, then the error rates for classification become unacceptably large.

In order to separate the images of ideal-item—score patterns, additional
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dimensions may be needed. For the analysis of SAT M, Section 2, five
dimensions are added.

Generalized (s were first defined by Varadi & Tatsuoka (1989). Suppose T
is a subset of items, then the generalized ¢, is defined as the sum of the
scalar product of two residuals, (P;(8)-X;)’ (P;(8)-T(8)), over all j in T,
divided by the standard deviation of the sum. Selection of I' is still an art
and its further development is left as a research topic for the future.
However, it is recommended to take union and intersection sets of the items
which correspond to the attribute row vectors, A,,...,A; of the incidence
matrix. Generalized zeta defined on the items involving Ay, (. is given below
with its numerator function f:

£(z,8,) = (P;(8,)-Z;, P;(8,)-T(8,)) (6)

= (Q' [P;(8,)-X;], Q' [P;(8,)-T(6,)})
= Q' ([P;(8,)-X;], [P;(8,)-T(6,)])

2 - £(z,6,)/SQRT{Var(£(z,6,)]) (7
where z = Q x, and 6, is the Maximum Likelihood Estimate obtained from the
items involving A,.

The expectation and variance of f(z,8,) are given by (8) and (9).

E[f(z,6,)] = 0 (8)

Var(f(z, 8,)) = Y P;(8,) (1 - P;(8,)) [P;(6,) -~ T(8,)]? (9)
je{Q,#0}

The generalized {s are uncorrelated with 6, which can be shown in
exactly in the same manner as the proof for the uncorrelatedness of 6 and ¢
given in Tatsuoka (1985). Furthermore, a generalized { computed by using the
items involving any combination of Ay — defined as the union or intersection

sets of A, ,k=l1,..L — also has the orthogonality property with 8.
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Any generalized ¢ can be added to the original two-dimensional Cartesian
product space as a new dimension, and a multidimensional classification space
can be formulated. Both the ideal-item—score patterns and examinees’ response
patterns are mapped into the (m+2)- dimensional Cartesian product space ((6,
¢, €1, §2o --- » $w)). The larger the value of {,, is, the more unusual the
performance on the items involving Attribute Ay is. Thus, each coordinate in
the multidimensional rule space can maintain interpretability.

The set of atoms in the lattice of K attributes forms a basis (Tatsuoka,
1991, Birkhoff, 1970), but it is very difficult to give intuitive
interpretations to the atoms unless the incidence matrix is diagonal — each
attribute being involved in only one item and each item involving only one
attribute. So, the atoms are not used in the rule-space model although they
are mathematically useful entities. However, if intuitive interpretations of
the coordinates are not required, then the atoms can be used for formulating a
multidimensional space, after transforming item score patterns.

For SAT M, Section 2, five generalized (s were added to the original
two-dimensional space, and classification of examinees was done in the

resulting seven dimensional space. The new dimensions are shown in Table A.2.

Insert Table A.2 about here

The interpretation of each new axis is similar to that of { which uses
all the items. For example, {, is computed using the items involving the
attributes 1,3 and 4 in which 14 items are considered. If the value of {,; is
large, then the pattern of the 14 relevant items is aberrant, while a smaller

value (including a negative value) of ¢, indicates that the pattern conforms

well to the order of difficulty for the 14 items.
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The bug distributions for cognitive states — the images of the ideal-
item—score patterns and their fuzzy response patterns into the m+2 dimensional
classification space — are assumed to be multivariate normal distributions.
Their centroids are the images of the ideal-item-score patterns. A squared
Mahalanobis distance between X and the image of R that is the centroid of bug
distribution R, or a cognitive state R follows a x? distribution with m+2
degrees of freedom (Lachenbruch, 1975). The classification procedure and
computation of error probabilities, prior and posterior probabilities are a
straightforward extension of the two dimensional case.

After classifying examinees’ response patterns into one of the
predetermined groups or cognitive states, their item response patterns
correspond to the attribute mastery patterns along with the information about
D2, error probabilities, probability of belonging to the cognitive state to
which the examinees are classified, ML estimates of ©, { and generalized ¢s
(Varadi & Tatsuoka, 1989). We propose to use the attribute patterns to
estimate Attribute Characteristic Curves, which is comparable to the
estimation of Item Response Curves. However, we don’'t use parametric functions
for PFAs. Non—-parametric estimation of PFAs will be illustrated with the
attribute mastery patterns of SAT M Section 4. In the next section, analysis

results will be described.
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Table A.1 The first 10 out of 600 ideal-item-score
patterns derived from the incidence matrix given in Table 1.
Cognitive Ideal-Item-Score e (4 Attribute
States Patterns, 25 items Patterns
1 1111111111111111111111111 S5.00 .52 11111111111111
2 1111111111111111011111000 1.83 -1.37 11111111110111
3 1111111111111011111101111 2.30 1.88 11111101111111
4 1111111111111011011101000 1.12 -.55 11111101110111
5 11111111111101111111111i11 3.06 1.43 11011111111111
6 1111111111110111011111000 1.41 -.59 11011111110111
7 1111111111110011111101111 1.74 2.59 11011101111111
8§ 1111111111110011011101000 .82 .14 11011101110111
9 1111111110111111101111101 1.98 .67 11111111011111
10 1111111110111111001111000 1.14 -.69 11111111010111
301 0111110010010011110000000 -.61 -.94 10111011000111
302 0111110010011010100000000 -.60 -.05 10111001001111
591 0000000000000001100000000 -2.76 1.52 10011000011101
592 0000000000000001010000000 -2.84 1.42 10011100110001
593 0000000000000001000100000 -2.87 1.38 10001000010111
594 0000000000000001000000000 -3.52 .86 10001000010001
595 0000000000000000110000010 -2.44 2.44 00010101011101
596 0000000000000000110000000 -2.74 1.76 00010100111101
597 0000000000000000100000000 -3.32 1.13 00010000001101
598 0000000000000000010000010 -2.91 1.65 00010101111001
599 0000000000000000010000000 -3.48 1.02 00010100110001
600 0000000000000000000000000 -5.00 .53  00000000000000
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Table A.2 The Generalized {s Added as New Dimensions and
Their Attribute Sub Space

Attributes Corresponding items

1 ¢, A+Ag+A, 2,3,4,5,8,9,10,11,13,15,16,19,20,25

2 &, As 2,6,13,21

3 {s AgtA,,  8,11,12,16,18,20,22,23,25

4 ¢, An+A,, 1,2,5,6,8,9,11,12,13,15,16,19,20,21,22,23

S s Ay 14,17
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Here is the progression of the student's points throughout
the test. "o" = final point.

°T

4

X = ability level, Y = unusualness of response pattern
Fress HELP for mcre information

Figure 1 An Example of the Rule Space configuration
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Appendix Il

Possible Score Reports Based on the Rule-Space Results

Potential Audiences/Usages and Types of Reports

Audience

Usage Type of Repors *

Higher education institutions selection, placement of applicants

per examinee: 1,3

High schools
8. Test takers vocational decisions; skills to be improved ﬁmw ‘5 :
b. Teachers remediation/future instruction planning per.chsg: 8,9
¢. Principals teacher/curriculum evaluation antires school+
d. District Administration  school/curriculum evaluation, educational entire district + school
policy comparisons: 6, 7
e. State Administration district/curriculum evaluation, educational  entire state + district
policy comparisons: 6, 7
Item developers test evaluation: items to be improved/ peritem: 10,11,12
- added/deleted 13,14 ;

* For key see attached list of report’s components
Report's Components
a. ivi

1. SAT scale score

2. SAT percentile score (relative standing school-wise/nation-wise)

~ 3. Attribute probability e per student
4. Auribute probability profile on a 6 point scale, where: A=90-100; B=70-89; C=50-
69; D=30-49; E=10-29; F=0-9.

S. Detailed diagnosis (narrative) [description of attribute- mastery profile;

b appropriateness scores; recommendations .. . )
' 6. Attribute profile -means

7. SAT scores - theans

8. S-A (Student-Attribute) chart

9. S-I(Student -Itemn) chart
c.

Itlem performance
10. IRT item difficulty index

11. IRT item discrimination index
12. Attribute pattern per item (Q matrix)

13. Reliability indices

14. Results of regressing item difficulties on attribute veactors.
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The Database for the Retrieval System
a. Psychometric data

attributes

SAT scale

items

The basic information available for enhancing scoring reports is stored in the database. The
database consists of four parts:

1. The score matrix which contains student ID, an item response pattern, a 6-value, a {-
value (index for unusualness of a pattern), an attribute pattern for examinees.
2. The incidence matrix.

3. The probability matrix of indicating each item’s success rate at vari~us 6-levels (will be
converted to SAT scale later),

4. The probability matrix of indicating each attribute's mastery rate at various 0 levels.

b

. Contextual data

. Demographic data: student's gender, ethnicity, SES . ..
. Student's classroom/schoolldxsmct/statc afﬁhauon
. Test format .

The information stored in the database will be available for creating « variety of
combinations, according to a request by a user.

WA -

A mapping sentence that containing content, process and context facets areas will be
available to help choosing any combination of variables. Some users may chose content
variables for making a summary statistics of itern and attribute performance on a test while
others may select context (forms and settings of tests) variables to see their effect on
performance differences.

The retrieval system extracts any combination of information on the variables from the
database and prepares a summary for the required report.
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